Ten Good Reasons for Using Spline Wavelets
نویسنده
چکیده
The purpose of this note is to highlight some of the unique properties of spline wavelets. These wavelets can be classified in four categories: othogonal (Battle-Lemarié), semi-orthogonal (e.g., B-spline), shift-orthogonal, and biorthogonal (Cohen-DaubechiesFeauveau). Unlike most other wavelet bases, splines have explicit formulae in both the time and frequency domain, which greatly facilitates their manipulation. They allow for a progressive transition between the two extreme cases of a multiresolution: Haar's piecewise constant representation (spline of degree zero) versus Shannon's bandlimited model (which corresponds to a spline of infinite order). Spline wavelets are extremely regular and usually symmetric or anti-symmetric. They can be designed to have compact support and to achieve optimal time-frequency localization (B-spline wavelets). The underlying scaling functions are the B-splines, which are the shortest and most regular scaling functions of order L. Finally, splines have the best approximation properties among all known wavelets of a given order L. In other words, they are the best for approximating smooth functions.
منابع مشابه
Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملGlobal Illumination Using Overlapping Wavelets
This paper presents an eecient algorithm to generate realistic images using spline wavelets. Our algorithm departs from the use of non-overlapping wavelets by providing a continuous solution at no extra cost. This in turn eliminates need for inaccurate Gouraud shading or expensive nal gather step. Advantage of spline wavelets come from the fact that scaling functions are n th order B-splines th...
متن کاملLagrange wavelets for signal processing
This paper deals with the design of interpolating wavelets based on a variety of Lagrange functions, combined with novel signal processing techniques for digital imaging. Halfband Lagrange wavelets, B-spline Lagrange wavelets and Gaussian Lagrange (Lagrange distributed approximating functional (DAF)) wavelets are presented as specific examples of the generalized Lagrange wavelets. Our approach ...
متن کاملA new view on biorthogonal spline wavelets
The biorthogonal wavelets introduced by Cohen, Daubechies, and Feauveau contain in particular compactly supported biorthogonal spline wavelets with compactly supported duals. We present a new approach for the construction of compactly supported spline wavelets, which is entirely based on properties of splines in the time domain. We are able to characterize a large class of such wavelets which c...
متن کاملSolution of Nonlinear Fredholm-hammerstein Integral Equations by Using Semiorthogonal Spline Wavelets
Compactly supported linear semiorthogonal B-spline wavelets together with their dual wavelets are developed to approximate the solutions of nonlinear Fredholm-Hammerstein integral equations. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computationally attractive, an...
متن کامل